Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biomed Pharmacother ; 164: 114997, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20241696

ABSTRACT

The SARS-CoV-2 pandemic made evident that there are only a few drugs against coronavirus. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety profile. Starting from a list of 116 drug candidates, we used molecular modelling tools to rank the 44 most promising inhibitors. Next, we tested their efficacy as antivirals against α and ß coronaviruses, such as the HCoV-229E and SARS-CoV-2 variants. Four drugs, OSW-1, U18666A, hydroxypropyl-ß-cyclodextrin (HßCD) and phytol, showed in vitro antiviral activity against HCoV-229E and SARS-CoV-2. The mechanism of action of these compounds was studied by transmission electron microscopy and by fusion assays measuring SARS-CoV-2 pseudoviral entry into target cells. Entry was inhibited by HßCD and U18666A, yet only HßCD inhibited SARS-CoV-2 replication in the pulmonary Calu-3 cells. Compared to the other cyclodextrins, ß-cyclodextrins were the most potent inhibitors, which interfered with viral fusion via cholesterol depletion. ß-cyclodextrins also prevented infection in a human nasal epithelium model ex vivo and had a prophylactic effect in the nasal epithelium of hamsters in vivo. All accumulated data point to ß-cyclodextrins as promising broad-spectrum antivirals against different SARS-CoV-2 variants and distant alphacoronaviruses. Given the wide use of ß-cyclodextrins for drug encapsulation and their high safety profile in humans, our results support their clinical testing as prophylactic antivirals.


Subject(s)
COVID-19 , Dermatologic Agents , beta-Cyclodextrins , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , beta-Cyclodextrins/pharmacology , beta-Cyclodextrins/therapeutic use
2.
Int J Pharm ; 640: 123035, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2313531

ABSTRACT

Cannabidiol (CBD) has a number of biological effects by acting on the cannabinoid receptors CB1 and CB2. CBD may be involved in anti-inflammatory processes via CB1 and CB2 receptors, resulting in a decrease of pro-inflammatory cytokines. However, CBD's poor aqueous solubility is a major issue in pharmaceutical applications. The aim of the present study was to develop and evaluate a CBD nasal spray solution. A water-soluble CBD was prepared by complexation with ß-cyclodextrin (ß-CD) at a stoichiometric ratio of 1:1 and forming polymeric micelles using poloxamer 407. The mixture was then lyophilized and characterized using FT-IR, DSC, and TGA. CBD-ß-CD complex-polymeric micelles were formulated for nasal spray drug delivery. The physicochemical properties of the CBD-ß-CD complex-polymeric micelle nasal spray solution (CBD-ß-CDPM-NS) were assessed. The results showed that the CBD content in the CBD-ß-CD complex polymeric micelle powder was 102.1 ± 0.5% labeled claim. The CBD-ß-CDPM-NS was a clear colorless isotonic solution. The particle size, zeta potential, pH value, and viscosity were 111.9 ± 0.7 nm, 0.8 ± 0.1 mV, 6.02 ± 0.02, and 12.04 ± 2.64 cP, respectively. This formulation was stable over six months at ambient temperature. The CBD from CBD-ß-CDPM-NS rapidly released to 100% within 1 min. Ex vivo permeation studies of CBD-ß-CDPM-NS through porcine nasal mucosa revealed a permeation rate of 4.8 µg/cm2/min, which indicated that CBD was effective in penetrating nasal epithelial cells. CBD-ß-CDPM-NS was tested for its efficacy and safety in terms of cytokine production from nasal immune cells and toxicity to nasal epithelial cells. The CBD-ß-CDPM-NS was not toxic to nasal epithelial at the concentration of CBD equivalent to 3.125-50 µg/mL. When the formulation was subjected to bioactivity testing against monocyte-like macrophage cells, it proved that the CBD-ß-CDPM-NS has the potential to inhibit inflammatory cytokines. CBD-ß-CDPM-NS demonstrated the formulation's ability to reduce the cytokine produced by S-RBD stimulation in ex vivo porcine nasal mucosa in both preventative and therapeutic modes.


Subject(s)
COVID-19 , Cannabidiol , beta-Cyclodextrins , Animals , Swine , Cannabidiol/chemistry , Micelles , Nasal Sprays , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Cytokine Release Syndrome , beta-Cyclodextrins/chemistry
3.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2295333

ABSTRACT

Nucleocapsid protein (N protein) is an appropriate target for early determination of viral antigen-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have found that ß-cyclodextrin polymer (ß-CDP) has shown a significant fluorescence enhancement effect for fluorophore pyrene via host-guest interaction. Herein, we developed a sensitive and selective N protein-sensing method that combined the host-guest interaction fluorescence enhancement strategy with high recognition of aptamer. The DNA aptamer of N protein modified with pyrene at its 3' terminal was designed as the sensing probe. The added exonuclease I (Exo I) could digest the probe, and the obtained free pyrene as a guest could easily enter into the hydrophobic cavity of host ß-CDP, thus inducing outstanding luminescent enhancement. While in the presence of N protein, the probe could combine with it to form a complex owing to the high affinity between the aptamer and the target, which prevented the digestion of Exo I. The steric hindrance of the complex prevented pyrene from entering the cavity of ß-CDP, resulting in a tiny fluorescence change. N protein has been selectively analyzed with a low detection limit (11.27 nM) through the detection of the fluorescence intensity. Moreover, the sensing of spiked N protein from human serum and throat swabs samples of three volunteers has been achieved. These results indicated that our proposed method has broad application prospects for early diagnosis of coronavirus disease 2019.


Subject(s)
COVID-19 , Polymers , Humans , Polymers/chemistry , SARS-CoV-2 , Fluorescence , COVID-19/diagnosis , Pyrenes/chemistry
4.
J Mol Liq ; 377: 121544, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2272554

ABSTRACT

Tenofovir (TFR) is an antiviral drug commonly used to fight against viral diseases infection due to its good potency and high genetic barrier to drug resistance. In physiological conditions, TFR is less water soluble, more unstable, and less permeable, limiting its effective therapeutic applications. In addition to their use in treating the Coronavirus disease 2019 (COVID-19), cyclodextrins (CDs) are also being used as a molecule to develop therapies for other diseases due to its enhance solubility and stability. This study is designed to synthesize and characterization of ß-CD:TFR inclusion complex and its interaction against SARS-CoV-2 (MPro) protein (PDB ID;7cam). Several techniques were used to characterize the prepared ß-CD:TFR inclusion complex, including UV-Visible, FT-IR, XRD, SEM, TGA, and DSC, which provided appropriate evidence to confirm the formation. A 1:1 stoichiometry was determined for ß-CD:TFR inclusion complex in aqueous medium from UV-Visible absorption spectra by using the Benesi-Hildebrand method. Phase solubility studies proposed that ß-CD enhanced the excellent solubility of TFR and the stability constant was obtained at 863 ± 32 M-1. Moreover, the molecular docking confirmed the experimental results demonstrated the most desirable mode of TFR encapsulated into the ß-CD nanocavity via hydrophobic interactions and possible hydrogen bonds. Moreover, TFR was validated in the ß-CD:TFR inclusion complex as potential inhibitors against SARS-CoV-2 main protease (Mpro) receptors by using in silico methods. The enhanced solubility, stability, and antiviral activity against SARS-CoV-2 (MPro) suggest that ß-CD:TFR inclusion complexes can be further used as feasible water-insoluble antiviral drug carriers in viral disease infection.

5.
Molecules ; 27(17)2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2006140

ABSTRACT

Disulfiram (DS), known as an anti-alcoholism drug, has shown a potent antiviral activity. Still, the potential clinical application of DS is limited by its low water solubility and rapid metabolism. Cyclodextrins (CDs) have been widely used to improve the solubility of drugs in water. In this study, five concentrations of hydroxypropyl ß-cyclodextrin (HP) and sulfobutyl ether ß-cyclodextrin (SBE) were used to form inclusion complexes of DS for enhanced solubility. Solutions were freeze-dried, and the interaction between DS and CD was characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). In addition, the nebulization properties of the DS-CD solutions were studied. The aqueous solubility of DS increased significantly when loaded to either of both CDs. The phase solubility of both complexes was a linear function of the CD concentration (AL type). Furthermore, physicochemical characterization studies showed a potent inclusion of the drug in the CD-DS complexes. Aerosolization studies demonstrated that these formulations are suitable for inhalation. Overall, the CD inclusion complexes have great potential for the enhancement of DS solubility. However, further studies are needed to assess the efficacy of DS-CD inclusion complexes against SARS-CoV-2 via nebulization.


Subject(s)
COVID-19 Drug Treatment , Cyclodextrins , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Calorimetry, Differential Scanning , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Disulfiram/pharmacology , Humans , SARS-CoV-2 , Solubility , Spectroscopy, Fourier Transform Infrared , Water , X-Ray Diffraction , beta-Cyclodextrins/chemistry
6.
J Pharm Biomed Anal ; 212: 114646, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1699455

ABSTRACT

SBECD (Captisol®) with an average degree of substitution of 6.5 sulfobutylether functional groups (SBE = 6.5), is a solubility enhancer for remdesivir (RDV) and a major component in Veklury, which was approved by FDA for the treatment of patients with COVID-19 over 12 years old and weighing over 40 kg who require hospitalization. SBECD is cleared mainly by renal filtration, thus, potential accumulation of SBECD in the human body is a concern for patients dosed with Veklury with compromised renal function. An LC-MS/MS method was developed and validated for specific, accurate, and precise determination of SBECD concentrations in human plasma. In this method, the hexa-substituted species, SBE6, was selected for SBECD quantification, and the mass transition from its dicharged molecular ion [(M-2H)/2]2-, Molecular (parent) Ion (Q1)/Molecular (parent) Ion (Q3) of m/z 974.7/974.7, was selected for quantitative analysis of SBECD. Captisol-G (SBE-γ-CD, SBE = 3) was chosen as the internal standard. With 25 µL of formic-acid-treated sample and with a calibration range of 10.0-1000 µg/mL, the method was validated with respect to pre-established criteria based on regulatory guidelines and was applied to determine SBECD levels in plasma samples collected from pediatric patients during RDV clinical studies.


Subject(s)
COVID-19 Drug Treatment , beta-Cyclodextrins , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Child , Chromatography, Liquid , Humans , SARS-CoV-2 , Sodium , Tandem Mass Spectrometry/methods
7.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1572568

ABSTRACT

The encapsulation mode of dexamethasone (Dex) into the cavity of ß-cyclodextrin (ß-CD), as well as its potential as an inhibitor of the COVID-19 main protease, were investigated using density functional theory with the recent dispersion corrections D4 and molecular docking calculations. Independent gradient model and natural bond orbital approaches allowed for the characterization of the host-guest interactions in the studied systems. Structural and energetic computation results revealed that hydrogen bonds and van der Waals interactions played significant roles in the stabilization of the formed Dex@ß-CD complex. The complexation energy significantly decreased from -179.50 kJ/mol in the gas phase to -74.14 kJ/mol in the aqueous phase. A molecular docking study was performed to investigate the inhibitory activity of dexamethasone against the COVID-19 target protein (PDB ID: 6LU7). The dexamethasone showed potential therapeutic activity as a SARS CoV-2 main protease inhibitor due to its strong binding to the active sites of the protein target, with predicted free energy of binding values of -29.97 and -32.19 kJ/mol as calculated from AutoDock4 and AutoDock Vina, respectively. This study was intended to explore the potential use of the Dex@ß-CD complex in drug delivery to enhance dexamethasone dissolution, thus improving its bioavailability and reducing its side effects.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , beta-Cyclodextrins/pharmacology , Antiviral Agents/pharmacology , Drug Carriers/pharmacology , Humans , Molecular Docking Simulation
8.
Int J Pharm ; 609: 121113, 2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1473322

ABSTRACT

Depression-the global crisis hastened by the coronavirus outbreak, can be efficaciously treated by the selective serotonin reuptake inhibitors (SSRIs). Cyclodextrin (CD) inclusion complexation is a method of choice for reducing side effects and improving bioavailability of drugs. Here, we investigate in-depth the ß-CD encapsulation of sertraline (STL) HCl (1) and fluoxetine (FXT) HCl (2) by single-crystal X-ray diffraction and DFT complete-geometry optimization, in comparison to the reported complex of paroxetine (PXT) base. X-ray analysis unveiled the 2:2 ß-CD-STL/FXT complexes with two drug molecules inserting their halogen-containing aromatic ring in the ß-CD dimeric cavity, which are stabilized by the interplay of intermolecular O2-H⋯N1-H⋯O3 H-bonds, C3/C5-H⋯π and halogen⋯halogen interactions. Similarly, the 1:1 ß-CD-tricyclic-antidepressant (TCA) complexes have an exclusive inclusion mode of the aromatic ring, which is maintained by C3/C5-H⋯π interactions. By contrast, the 2:1 ß-CD-PXT complex has a total inclusion that is stabilized by host-guest O6-H⋯N1-H⋯O5 H-bonds and C3-H⋯π interactions. The inherent stabilization energies of 1 and 2 evaluated using DFT calculation suggested that the improved thermodynamic stabilities via CD encapsulation facilitates the reduction of drug side effects. Moreover, the SSRI conformational flexibilities are thoroughly discussed for understanding of their pharmacoactivity.


Subject(s)
Selective Serotonin Reuptake Inhibitors , beta-Cyclodextrins , Crystallography, X-Ray , Density Functional Theory , X-Ray Diffraction
9.
Clin Microbiol Infect ; 27(10): 1494-1501, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1454090

ABSTRACT

OBJECTIVES: To determine if commercially available mouthwash with ß-cyclodextrin and citrox (bioflavonoids) (CDCM) could decrease the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) salivary viral load. METHODS: In this randomized controlled trial, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-positive patients aged 18-85 years with asymptomatic to mild coronavirus disease 2019 (COVID-19) symptoms for <8 days were recruited. A total of 176 eligible patients were randomly assigned (1:1) to CDCM or placebo. Three rinses daily were performed for 7 days. Saliva sampling was performed on day 1 at 09.00 (T1), 13.00 (T2) and 18.00 (T3). On the following 6 days, one sample was taken at 15.00. Quantitative RT-PCR was used to detect SARS-CoV-2. RESULTS: The intention-to-treat analysis demonstrated that, over the course of 1 day, CDCM was significantly more effective than placebo 4 hours after the first dose (p 0.036), with a median percentage (log10 copies/mL) decrease T1-T2 of -12.58% (IQR -29.55% to -0.16%). The second dose maintained the low median value for the CDCM (3.08 log10 copies/mL; IQR 0-4.19), compared with placebo (3.31 log10 copies/mL; IQR 1.18-4.75). At day 7, there was still a greater median percentage (log10 copies/mL) decrease in salivary viral load over time in the CDCM group (-58.62%; IQR -100% to -34.36%) compared with the placebo group (-50.62%; IQR -100% to -27.66%). These results were confirmed by the per-protocol analysis. CONCLUSIONS: This trial supports the relevance of using CDCM on day 1 (4 hours after the initial dose) to reduce the SARS-CoV-2 viral load in saliva. For long-term effect (7 days), CDMC appears to provide a modest benefit compared with placebo in reducing viral load in saliva.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/prevention & control , Mouthwashes/therapeutic use , SARS-CoV-2/drug effects , Adolescent , Adult , Aged , Antiviral Agents/chemistry , Asymptomatic Infections , COVID-19/transmission , Double-Blind Method , Female , Flavonoids/analysis , Flavonoids/therapeutic use , Humans , Intention to Treat Analysis , Male , Middle Aged , Mouthwashes/chemistry , SARS-CoV-2/isolation & purification , Saliva/virology , Viral Load/drug effects , Young Adult , beta-Cyclodextrins/analysis , beta-Cyclodextrins/therapeutic use
10.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-1360806

ABSTRACT

Depression, a global mental illness, is worsened due to the coronavirus disease 2019 (COVID-2019) pandemic. Tricyclic antidepressants (TCAs) are efficacious for the treatment of depression, even though they have more side effects. Cyclodextrins (CDs) are powerful encapsulating agents for improving molecular stability, water solubility, and lessening the undesired effects of drugs. Because the atomic-level understanding of the ß-CD-TCA inclusion complexes remains elusive, we carried out a comprehensive structural study via single-crystal X-ray diffraction and density functional theory (DFT) full-geometry optimization. Here, we focus on two complexes lining on the opposite side of the ß-CD-TCA stability spectrum based on binding constants (Kas) in solution, ß-CD-protriptyline (PRT) 1-most stable and ß-CD-maprotiline (MPL) 2-least stable. X-ray crystallography unveiled that in the ß-CD cavity, the PRT B-ring and MPL A-ring are aligned at a nearly perfect right angle against the O4 plane and primarily maintained in position by intermolecular C-H···π interactions. The increased rigidity of the tricyclic cores is arising from the PRT -CH=CH- bridge widens, and the MPL -CH2-CH2- flexure narrows the butterfly angles, facilitating the deepest and shallower insertions of PRT B-ring (1) and MPL A-ring (2) in the distorted round ß-CD cavity for better complexation. This is indicated by the DFT-derived complex stabilization energies (ΔEstbs), although the complex stability orders based on Kas and ΔEstbs are different. The dispersion and the basis set superposition error (BSSE) corrections were considered to improve the DFT results. Plus, the distinctive 3D arrangements of 1 and 2 are discussed. This work provides the first crystallographic evidence of PRT and MPL stabilized in the ß-CD cavity, suggesting the potential application of CDs for efficient drug delivery.

11.
Pharmaceuticals (Basel) ; 14(5)2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1244094

ABSTRACT

In the current study, the effect of poloxamer 188 on the complexation efficiency and dissolution of arbidol hydrochloride (ADL), a broad-spectrum antiviral agent, with ß-cyclodextrin (ß-CD) was investigated. Phase solubility studies confirmed a stoichiometry of a 1:1 ratio for both ADL:ß-CD and ADL/ß-CD with a 1% poloxamer 188 system with an AL type of phase solubility curve. The stability constants (K1:1) calculated from the AL type diagram were 550 M-1 and 2134 M-1 for AD:ß-CD and ADL/ß-CD with 1% poloxamer 188, respectively. The binary ADL/ß-CD and ternary ADL/ß-CD with 1% poloxamer 188 complexes were prepared by kneading and a solvent evaporation method and were characterized by aqueous solubility, FTIR, PXRD, DSC and SEM in vitro studies. The solubility (13.1 fold) and release of ADL were markedly improved in kneaded ternary ADL/ß-CD with 1% poloxamer 188 (KDB). The binding affinity of ADL and ß-CD was confirmed by 1H NMR and 2D ROSEY studies. The ternary complex (KDB) was further subjected for in vivo pharmacokinetic studies in rats and a significant improvement in the bioavailability (2.17 fold) was observed in comparison with pure ADL. Therefore, it can be concluded that the solubilization and bioavailability of ADL can be remarkably increased by ADL/ß-CD complexation in the presence of a third component, poloxamer 188.

12.
Trials ; 21(1): 906, 2020 Nov 02.
Article in English | MEDLINE | ID: covidwho-901917

ABSTRACT

OBJECTIVES: - To describe the evolution of the SARS-CoV-2 salivary viral load of patients infected with Covid-19, performing 7 days of tri-daily mouthwashes with and without antivirals. - To compare the evolution of the SARS-CoV-2 nasal and salivary viral load according to the presence or absence of antivirals in the mouthwash. TRIAL DESIGN: This is a multi-center, randomised controlled trial (RCT) with two parallel arms (1:1 ratio). PARTICIPANTS: Inclusion criteria - Age: 18-85 years old - Clinical diagnosis of Covid-19 infection - Clinical signs have been present for less than 8 days - Virological confirmation - Understanding and acceptance of the trial - Written agreement to participate in the trial Exclusion criteria - Pregnancy, breastfeeding, inability to comply with protocol, lack of written agreement - Patients using mouthwash on a regular basis (more than once a week) - Patient at risk of infectious endocarditis - Patients unable to answer questions - Uncooperative patient The clinical trial is being conducted with the collaboration of three French hospital centers: Hospital Center Emile Roux (Le Puy en Velay, France), Clinic of the Protestant Infirmary (Lyon, France) and Intercommunal Hospital Center (Mont de Marsan, France). INTERVENTION AND COMPARATOR: Eligible participants will be allocated to one of the two study groups. Intervention group: patients perform a tri-daily mouthwash with mouthwash containing antivirals (ß-cyclodextrin and Citrox®) for a period of 7 days. CONTROL GROUP: patients perform a tri-daily mouthwash with a placebo mouthwash for a period of 7 days. MAIN OUTCOMES: Primary Outcome Measures: Change from Baseline amount of SARS-CoV-2 in salivary samples at 4 and 9 hours, 1, 2, 3, 4, 5 and 6 days. Real-time PCR assays are performed to assess salivary SARS-CoV 2 viral load. SECONDARY OUTCOME MEASURES: Change from Baseline amount of SARS-CoV-2 virus in nasal samples at 6 days. Real-time PCR assays are performed to assess nasal SARS-CoV-2 viral load. RANDOMISATION: Participants meeting all eligibility requirements are allocated to one of the two study arms (mouthwash with ß-cyclodextrin and Citrox® or mouthwash without ß-cyclodextrin and Citrox®) in a 1:1 ratio using simple randomisation with computer generated random numbers. BLINDING (MASKING): Participants, doctors and nurses caring for participants, laboratory technicians and investigators assessing the outcomes will be blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Both the intervention and control groups will be composed of 103 participants, so the study will include a total of 206 participants. TRIAL STATUS: The current protocol version is 6, August 4th, 2020. Recruitment began on April 6, 2020 and is anticipated to be complete by April 5, 2021. As of October 2, 2020, forty-two participants have been included. TRIAL REGISTRATION: This trial was registered on 20 April 2020 at www.clinicaltrials.gov with the number NCT04352959 . FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol." The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2)."


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections , Mouthwashes , Nasal Cavity/virology , Pandemics , Pneumonia, Viral , Saliva/virology , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Drug Monitoring/methods , Female , Humans , Male , Mouthwashes/administration & dosage , Mouthwashes/adverse effects , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , Viral Load , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL